Algebra II

6-1
Roots of
Real Numbers

$$
\begin{aligned}
\sqrt{49} & =7 \\
\text { Does } \sqrt{49} & =-7, \text { too? No, by definition } \\
-\sqrt{49} & =-7 \\
\sqrt{-49} & =\varnothing \\
\sqrt{2^{2}} & =2 \\
\sqrt{(-2)^{2}} & =\sqrt{4}=2
\end{aligned}
$$

What does $\sqrt{4}$ mean? What number multiplied by itself, equals 4

Name the parts of \sqrt{x}.
index

$$
\begin{aligned}
\sqrt[3]{125}=5 \quad(\sqrt[3]{8} & =2 \quad(2)(2)(2)=8 \\
\sqrt[3]{-8} & =-2 \\
\sqrt[4]{81} & =3 \\
\sqrt[4]{-81} & =\varnothing
\end{aligned}
$$

even index \rightarrow no negative allowed on the inside.

True / False

1) x is always positive. False $\quad x=-1$
2) $-x$ is always negative. False $-x=-(-1)=1$
3) x^{2} is always positive. False
4) x^{2} is never negative. True
5) x^{3} is never negative. \qquad $(-1)^{3}=-1$

$$
\begin{aligned}
& \sqrt{x^{2}}=|x| \\
& \sqrt[3]{x^{3}}=x \\
& \sqrt[4]{x^{4}}=|x| \\
& \sqrt[4]{x^{12}}=\left|x^{3}\right| \\
& \sqrt[3]{x^{9}}=x^{3}
\end{aligned}
$$

When do we need absolute value? even index x

Simplify each expression. If the expression does not represent (pg 262) a real number, say so.

1) a) $\sqrt{16}=4$
b) $-\sqrt{16}=-4$
c) $\sqrt{-16}=\varnothing$
d) $\sqrt[4]{16}=\mathbf{2}$
$2(2)(2)(2)$
2) a) $\sqrt{a^{2}}=|a|$
b) $\sqrt[2]{a^{4}}=\left|a^{2}\right|$
c) $\sqrt[4]{a^{4}}=|a|$
d) $\sqrt[2]{a^{6}}=\left|\mathbf{a}^{3}\right|$

For what values is each of the following true?
27) $\sqrt[2]{(x+5)^{2}}=x+5$ $|x+5|=x+5$ $[-5, \infty)$

Assignment:

Pg. 262
1-34 all

